FIG. S1, SDC. B cells do not infiltrate islet allografts during acute rejection. BALB/c islets were transplanted in diabetic B6 recipients. Islet allografts were retrieved on day 14 posttransplantation, processed and stained for B220 and insulin as described in Materials and Methods. Sections of the spleen from the same mouse were used as a positive control for B220 staining. Left panel: islet allograft, 10x; Right panel: spleen, 10x. Blue = DAPI, red = B220, green = insulin (INS). Only minimal insulin staining was detected by day 14 post transplantation, as recipient B6 mice had completely rejected the BALB/c islet allografts and returned to hyperglycemia. Data shown is representative of three BALB/c islet allografts examined.
FIG. S2, SDC. Pig-to-BALB/c islet transplantation. **A:** In BALB/c recipients of pig islet xenografts, heightened IL-17 production can be detected in the rejection grafts in comparison to IFN-γ production. Quantitative PCR for IL-17 and IFN-γ mRNA level from transplanted pig islet xenografts retrieved on day 10 post transplantation from BALB/c recipients. Expression levels were normalized to GAPDH and shown as “Relative expression”. Xeno: pig→BALB/c islet grafts; Syn: BALB/c→BALB/c islet grafts. **B:** Pig islet xenograft survival in diabetic BALB/c recipients can be prolonged by recipient treatment with pig ECDI-SP + anti-CD20 + rapamycin triple therapy as described in Materials and Methods. “Control”: BALB/c mice transplanted with pig islet xenografts in the absence of any treatment.