Figure S1 Orthotopic lung transplantation procedure. The donor operation proceeded primarily as follows: flushing of the blood from the lung (A), and dissection of the donor PA (B) and PV (C) from the hilum and cuffed PA and PV including the bronchus (D). The recipient operation began with the dissection of the recipient PV (E) and PA (F) from the bronchus. After using an aneurysm clip to block the left hilum of the recipient, 9-0 nylon sutures were placed around the PA, PV and bronchus for future securing of the cuffs (G). The cuffed donor was transplanted into the recipient through an incision that was made on the recipient PA, PV and bronchus (H) through which the donor PA, PV and bronchus were then inserted into corresponding structures of the recipients (I, J). After being secured with 9–0 nylon suture (K), the clip was removed. The lung graft was re-perfused and placed back in the chest (L).
Figure S2 Frequencies of Th17 cells, IL-17+ γδ T cells and IL-17+ CD8+ cells in the lung isografts and allografts. The lymphocytes in the lung isografts and allografts were isolated and stained and then quantified with flow cytometry analyses (each group: n=6). (A) Dot-plots showed the gating strategies and frequencies of Th17 cells, IL-17+ γδ T cells and IL-17+ CD8+ cells in the lung isografts and allografts on PODs 7. (B) The data were presented as bars showing the changes in the Th17 cells, IL-17+ γδ T cells and IL-17+ CD8+ cells in the lung isografts and allografts on PODs 3 and 7.

*Compared to the isografts at the corresponding time points, P<0.05.
Figure S3 **The efficacy of Tregs induction in vitro and the stability of iTregs in vivo.** (A) The efficacy of Tregs induction was analyzed by CD25 and FoxP3 staining using flow cytometry. (B) Representative data from PODs 5. The splenocytes of the allograft recipients with transferred iTregs-CFSE were fixed and permeabilized and then stained with Foxp3 antibody. Dot-plots showed the CFSE and FoxP3 expressions. (C) Representative data from PODs 5. The splenocytes of the allograft recipients with transferred iTregs-CFSE were restimulated as described in the methods. After fixation and permeabilization, these cells were stained with IL-17 antibody. Dot-plots showed the CFSE and IL-17 expressions. CFSE: carboxyfluorescein succinimidyl amino ester.
Figure S4 Pro- and anti-inflammatory cytokine levels and IL-17-producing cell expressions in the iTregs transferred recipients and the non-transferred recipients on PODs 5. (A) Pro- and anti-inflammatory cytokines, including IL-6, IL-17, IL-10 and TGF-β, were measured in the serum of the iTregs transferred recipients (n=5) and non-transferred recipients (n=5) by cytometric bead array on PODs 5. (B) The IL-17-producing cells in the splenocytes were evaluated in iTregs transferred recipients (n=5) and non-transferred recipients (n=5) by flow cytometry on PODs 5.