eTable

Standard Deviation Formulas for Crude Measures of Epidemiologic Effect

Risk difference

\[
SD(\widehat{RD}) = \sqrt{\frac{a (N_1 - a) + b (N_0 - b)}{N_1^3 + N_0^3}}
\]

- \(a\) = exposed cases
- \(b\) = unexposed cases
- \(N_1\) = total exposed people
- \(N_0\) = total unexposed people

Risk ratio (on log scale)

\[
SD(\ln(\widehat{RR})) = \sqrt{\frac{1}{a} - \frac{1}{N_1^2} + \frac{1}{b} - \frac{1}{N_0^2}}
\]

- \(a\) = exposed cases
- \(b\) = unexposed cases
- \(N_1\) = total exposed people
- \(N_0\) = total unexposed people

Incidence rate difference

\[
SD(\widehat{IRD}) = \sqrt{\frac{a}{N_1^2} + \frac{b}{N_0^2}}
\]

- \(a\) = exposed cases
- \(b\) = unexposed cases
- \(N_1\) = total exposed person-time
- \(N_0\) = total unexposed person-time

Incidence rate ratio (log scale)

\[
SD(\ln(\widehat{IRR})) = \sqrt{\frac{1}{a} + \frac{1}{b}}
\]

- \(a\) = exposed cases
- \(b\) = unexposed cases
- \(N_1\) = total exposed person-time
- \(N_0\) = total unexposed person-time

Odds ratio (case-control study, log scale)

\[
SD(\ln(\widehat{OR})) = \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}
\]

- \(a\) = exposed cases
- \(b\) = unexposed cases
- \(c\) = exposed controls
- \(d\) = unexposed controls