Appendix.

Model for Crown Rump Length

For any given gestational age (t=i) in days, the mean log-transformed crown rump length (μ_{CRL}) is $\mu_{CRL}(\text{mm})=1.9084+0.025\times t_i$.

The standard deviation (σ_{CRL})=$0.3558–0.029\times t_i$.

Model for First Trimester Biparietal Diameter

For any given gestational age (t=i) in days, the mean log-transformed fetal biparietal diameter (μ_{BPD}) is $\mu_{BPD}(\text{mm})= -0.3588+0.0528\times t_i–0.0002\times t_i^2$.

The standard deviation (μ_{BPD})=0.06155284.

Model for Second Trimester Biparietal Diameter

For any given gestational age (t=i) in days, the mean log-transformed fetal biparietal diameter (μ_{BPD}) is $\mu_{BPD}(\text{mm})=2.1145+0.0162\times t_i–0.00003\times t_i^2$.

The standard deviation (μ_{BPD})=0.044996.

Model for Conditional Growth

Mean

For any given gestational age (t=i), the mean log-transformed fetal biparietal diameter (μ) is $\mu=\alpha+\beta\times t+\gamma\times \text{gender}$…

…where t is the gestational age in days (centered at 112 days) and gender=0 if female, and gender=1 if male.

Variance

For any given gestational age (t=i), the variance (\sigma^2) of fetal biparietal diameter is $\sigma^2=\sigma^2_{\alpha}+(2\times t\times \sigma_{\alpha\beta})+(\sigma^2_{\beta}+t^2)+(2\times \text{gender}\times \sigma_{\alpha\gamma})+(2\times \sigma_{\beta\gamma}\times t\times \text{gender})+\sigma^2_e$…

…where σ^2_{α} and σ^2_{β} are the variances of each parameter, $\sigma_{\alpha\beta}$, $\sigma_{\alpha\gamma}$, and $\sigma_{\beta\gamma}$ are the covariances of each pair of parameters, and σ^2_e the within subject variance.

© 2008 by The American College of Obstetricians and Gynecologists.
Conditional reference interval

The conditional mean ($\mu_{2/1}$) and variance ($\sigma_{2/1}^2$) of a second-trimester fetal biparietal diameter measurement (Z_2) given a first trimester fetal biparietal diameter measurement (Z_1) is

$$
\mu_{2/1} (Z_2/Z_1)=\mu_2 + (Z_1-\mu_1) \frac{\sigma_{12}}{\sigma_1^2}
$$

$$
\sigma_{2/1}^2 (Z_2/Z_1)=\sigma_2^2 - \sigma_{12}^2/\sigma_1^2 \ldots
$$

...where σ_{12} (conditional covariance) is

$$
\sigma_{12}=\sigma_a^2 + (t1 \times t2) \times \sigma_{\beta^2} + (t1 + t2) \times \sigma_{\alpha \beta} + 2 \times \text{gender} \times \sigma_{\alpha \gamma} + ((t1 \times \text{gender}) + (t2 \times \text{gender})) \times \sigma_{\beta \gamma}.
$$

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>3442.888·10^{-5}</td>
<td>3814.143·10^{-6}</td>
</tr>
<tr>
<td>β</td>
<td>1522.169·10^{-5}</td>
<td>1103.883·10^{-6}</td>
</tr>
<tr>
<td>γ</td>
<td>1590.617·10^{-6}</td>
<td>5379.582·10^{-6}</td>
</tr>
<tr>
<td>σ_a^2</td>
<td>1423.968·10^{-6}</td>
<td>4191.505·10^{-7}</td>
</tr>
<tr>
<td>σ_{β^2}</td>
<td>1386.502·10^{-9}</td>
<td>7110.601·10^{-10}</td>
</tr>
<tr>
<td>$\sigma_{\alpha \beta}$</td>
<td>-2552.835·10^{-8}</td>
<td>7395.640·10^{-9}</td>
</tr>
<tr>
<td>$\sigma_{\beta \gamma}$</td>
<td>2705.779·10^{-10}</td>
<td>1020.128·10^{-8}</td>
</tr>
<tr>
<td>$\sigma_{\alpha \gamma}$</td>
<td>-1293.614·10^{-7}</td>
<td>1915.307·10^{-7}</td>
</tr>
<tr>
<td>σ_e^2</td>
<td>2080.835·10^{-6}</td>
<td>6457.761·10^{-7}</td>
</tr>
<tr>
<td>$-2*\log$ likelihood</td>
<td>-1638.863</td>
<td></td>
</tr>
</tbody>
</table>

SE, standard error.

© 2008 by The American College of Obstetricians and Gynecologists.