Supplemental Digital Content 1

APPENDICES

(a) variables values for which the presented equations are true

The variables presented in the equations ($\bar{F}_{0}, \bar{v}_{0}, \bar{P}_{\max }, S_{F v}$ and $h_{P O}$) have to be consistent with push-off dynamics.

- Being a distance, $h_{P O}$ has to be a real positive value:

$$
\begin{equation*}
h_{P O}>0 \tag{A1}
\end{equation*}
$$

- In order to takeoff, the mean vertical force developed during push-off (in N) has to be higher than the body weight component along the axis of movement direction. Hence, when expressed relative to body mass (in N. kg^{-1}), the mean vertical force, and in turn \bar{F}_{0}, have to be a real positive value higher than the gravitational acceleration component along the axis of movement direction:
$\bar{F}_{0}>g \sin \alpha$
- In the same manner, in order to takeoff, the mean vertical velocity of the CM during push-off has to be a positive value. Hence,

$$
\begin{equation*}
\bar{v}_{0}>0 \tag{A3}
\end{equation*}
$$

- From equations [1] and [3], \bar{v}_{0} can be expressed as a function of $\bar{P}_{\max }$ and $S_{F v}$:

$$
\begin{equation*}
\bar{v}_{0}=2 \sqrt{\frac{\bar{P}_{\max }}{-S_{F v}}} \tag{A4}
\end{equation*}
$$

with $S_{F v}<0$, since $\bar{F}_{0}>0$ and $\bar{v}_{0}>0$.
Since $\bar{F}_{0}>g \sin \alpha$, and according to equation [1]:

$$
\begin{equation*}
\bar{P}_{\max }>\frac{\bar{v}_{0} g \sin \alpha}{4} \tag{A5}
\end{equation*}
$$

Substituting equation [A4] in equation [A5] gives:

$$
\begin{equation*}
\bar{P}_{\max }>\frac{g \sin \alpha}{2} \sqrt{\frac{\bar{P}_{\max }}{-S_{F v}}} \tag{A6}
\end{equation*}
$$

then,

$$
\begin{equation*}
\bar{P}_{\max }>\frac{(g \sin \alpha)^{2}}{-4 S_{F v}} \tag{A7}
\end{equation*}
$$

- Since $\bar{F}_{0}>g \sin \alpha$, and according to equation [3]:

$$
\begin{equation*}
-S_{F v}>\frac{g \sin \alpha}{\bar{v}_{0}} \tag{A8}
\end{equation*}
$$

Substituting equation [A4] in equation [A8], and after reduction, gives:

$$
\begin{equation*}
S_{F v}<-\frac{(g \sin \alpha)^{2}}{4 \bar{P}_{\max }} \tag{A9}
\end{equation*}
$$

(b) mathematical expression of $S_{F v}$ opt as a function of $\overline{\boldsymbol{P}}_{\max }$ and $\boldsymbol{h}_{P O}$

The optimal slope of F-v relationship ($S_{F v} o p t$) is the $S_{F v}$ value maximizing $v_{T O \text { max }}$. The mathematical expression of $S_{F v}$ opt as a function of $\bar{P}_{\max }$ and $h_{P O}$ is a real solution of:
$\frac{d v_{T O \text { max }}}{d S_{F v}}=0$
The first mathematical derivative of $v_{T O \text { max }}\left(\bar{P}_{\text {max }}, S_{F v}, h_{P O}\right)$ with respect to $S_{F v}$ is:

$$
\begin{equation*}
\frac{d v_{T O \text { max }}}{d S_{F v}}=\frac{h_{P O}{ }^{2}}{g}\left(\frac{S_{F v}-\frac{4 \bar{P}_{\max }}{h_{P O} \sqrt{-\bar{P}_{\max }} S_{F v}}}{4 \sqrt{\frac{1}{4} S_{F v}{ }^{2}+\frac{2}{h_{P O}}\left(2 \sqrt{-\bar{P}_{\max } S_{F v}}-g\right)}}+\frac{1}{2}\right)\left(\sqrt{\frac{1}{4} S_{F v}{ }^{2}+\frac{2}{h_{P O}}\left(2 \sqrt{-\bar{P}_{\max } S_{F v}}-g\right)}+\frac{1}{2} S_{F v}\right) \tag{A11}
\end{equation*}
$$

Equation [A10] has four solutions, of which only one corresponds to real values of $S_{F v}$ among values for which equation [6] is true:
$S_{F v} o p t=-\frac{g^{2}}{3 \bar{P}_{\max }}-\frac{\left(-\left(g^{4}\right) h_{P O}{ }^{4}-12 g h_{P O}{ }^{3} \bar{P}_{\max }{ }^{2}\right)}{3 h_{P O}{ }^{2} \bar{P}_{\max } Z\left(\bar{P}_{\max }, h_{P O}\right)}-\frac{Z\left(\bar{P}_{\max }, h_{P O}\right)}{3 h_{P O}{ }^{2} \bar{P}_{\max }}$
with
$Z\left(\bar{P}_{\max }, h_{P O}\right)=\left(-\left(g^{6}\right) h_{P O}{ }^{6}-18 g^{3} h_{P O}{ }^{5} \bar{P}_{\max }{ }^{2}-54 h_{P O}{ }^{4} \bar{P}_{\max }{ }^{4}+6 \sqrt{3} \sqrt{2 g^{3} h_{P O}{ }^{9} \bar{P}_{\max }{ }^{6}+27 h_{P O}{ }^{8} \bar{P}_{\max }{ }^{8}}\right)^{1 / 3}$
(c) power output developed during a vertical jump as a function of $S_{F v}$

According to basic ballistic principles, the height reached during a vertical jump ($h \mathrm{in} \mathrm{m}$) can be expressed as a function of the CM vertical take-off velocity $\left(v_{T O}\right)$:
$h=\frac{\boldsymbol{\nu}^{2}}{2 g}$
From equations [6] and [A14], and substituting $v_{T O}$ by $v_{T O \text { max }}$, the maximal jump height an individual can reach can be expressed as a function of $\bar{P}_{\max }, S_{F v}$ and $h_{P O}$.

On the other hand, the mean power output (\bar{P} in $\mathrm{W} . \mathrm{kg}^{-1}$) developed during a vertical jump was expressed as a function of h and push-off distance ($h_{P O}$ in m) (Samozino et al., 2008):
$\bar{P}=g\left(\frac{h}{h_{P O}}+1\right) \sqrt{\frac{g h}{2}}$
Consequently, from equations [6], [A14] and [A15], \bar{P} developed during the push-off of a maximal vertical jump can be expressed as a function of $\bar{P}_{\max }, S_{F v}$ and $h_{P O}$. This allows to analyze changes in \bar{P} according to changes in $S_{F v}$ (for a given $\bar{P}_{\max }$ and $h_{P O}$, Fig. 5).

