Title: Pulmonary Fibrosis in Workers Exposed to Non-asbestiform Tremolite Asbestos Minerals

Journal name: *Epidemiology*

Authors: Hsiao-Yu Yang, Ruei-Hao Shie, and Pau-Chung Chen

Affiliation:

- a Department of Occupational Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- b School of Medicine, Tzu Chi University, Hualien, Taiwan
- c Green Energy & Environmental Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
- d Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan
- e Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan

Corresponding author:

Dr. Pau-Chung Chen

Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, No. 17 Xuzhou Road, Taipei 100, Taiwan
Contents of Supplemental Material

Supplemental figure 1. Image of nephrite obtained with a stereomicroscope and viewed at 10x magnification. (A) Dark green nephrite, (B) Waxy nephrite, (C) Cat's-eye nephrite.

Legends:

The Samples were examined with a stereomicroscope at various magnifications using oblique illumination in accordance with method EPA-600/R93-116. This was done in order to obtain information about the fibrosity of the samples.

Supplemental figure 2. Image of nephrite viewed at 100x magnification polarized light microscopy. (A) Dark green nephrite, (B) Waxy nephrite, (C) Cat’s-eye nephrite.

Legends:

The images obtained during the polarized light microscopy examination showing the different degree of asbestiform fibrosity. Dark green nephrite was the least asbestiform, cat's-eye nephrite was the moderate asbestiform, and waxy nephrite was the most asbestiform. Aspect ratios of fibers in the samples are greater than 20:1,
increasing to well over 100:1 in waxy nephrite.

Supplemental figure 3. Image of nephrite examined by polarized light microscopy combined with central stop dispersion staining. (A) Dark green nephrite, (B) Waxy nephrite, (C) Cat’s-eye nephrite.

Legends:

Preparations were made using series E HD 1.605 refractive index liquids. The preparations were then examined by polarized light microscopy combined with central stop dispersion staining. Mineral identification was performed using method EPA-600/R93-116 and accepted microscopy principles. Sample was identified as nephrite, composed of asbestiform tremolite-actinolite in compact masses. Although the tremolite-actinolite in these samples is in compact crystalline cemented masses, they are considered asbestos on the basis of regulatory and mineral morphology criteria.
Supplemental figure 1
Supplemental figure 3